Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Gene ; 912: 148355, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38467314

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most prevalent malignant disease affecting women globally. PANoptosis, a novel form of cell death combining features of pyroptosis, apoptosis, and necroptosis, has recently gained attention. However, its precise function in BC and the predictive values of PANoptosis-related genes remain unclear. METHODS: We used the expression data and clinical information of BC tissues or normal breast tissues from public databases, and then successfully developed and verified a BC PANoptosis-related risk model through a combination of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and Kaplan-Meier (KM) analysis. A nomogram was constructed to estimate survival probability, and its accuracy was assessed using calibration curves. RESULTS: Among 37 PANoptosis-related genes, we identified 4 differentially expressed genes related to overall survival (OS). Next, a risk model incorporating these four PANoptosis-related genes was established. Patients were stratified into low/high-risk groups based on the median risk score, with the low-risk group showing better prognoses and higher levels of immune infiltration. Utilizing the risk score and clinical features, we developed a nomogram to predict 1-, 3- and 5-year survival probability. X-linked inhibitor of apoptosis protein (XIAP) emerged as a potentially risky factor with the highest hazard ratio. In vitro experiments demonstrated that XIAP inhibition enhances the antitumor effect of doxorubicin through the PANoptosis pathway. CONCLUSION: PANoptosis holds an important role in BC prognosis and treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Oncogenes/genetics , Doxorubicin , Apoptosis/genetics
2.
Cancer Res ; 83(21): 3636-3649, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37602818

ABSTRACT

An effective blood-based method for the diagnosis of colorectal cancer has not yet been developed. Molecular alterations of immune cells occur early in tumorigenesis, providing the theoretical underpinning for early cancer diagnosis based on immune cell profiling. Therefore, we aimed to develop an effective detection method based on peripheral blood mononuclear cells (PBMC) to improve the diagnosis of colorectal cancer. Analysis of the genome-wide methylation landscape of PBMCs from patients with colorectal cancer and healthy controls by microarray, pyrosequencing, and targeted bisulfite sequencing revealed five DNA methylation markers for colorectal cancer diagnosis, especially early-stage colorectal cancer. A single-tube multiple methylation-specific quantitative PCR assay (multi-msqPCR) for simultaneous detection of five methylation markers was established, which allowed quantitative analysis of samples with as little as 0.1% PBMC DNA and had better discriminative performance than single-molecule detection. Then, a colorectal cancer diagnostic model (CDM) based on methylation markers and the multi-msqPCR method was constructed that achieved high accuracy for early-stage colorectal cancer (AUC = 0.91; sensitivity = 81.18%; specificity = 89.39%), which was improved compared with CEA (AUC = 0.79). The CDM also enabled a high degree of discrimination for advanced adenoma cases (AUC = 0.85; sensitivity = 63.04%). Follow-up data also demonstrated that the CDM could identify colorectal cancer potential up to 2 years before currently used diagnostic methods. In conclusion, the approach constructed in this study based on PBMC-derived DNA methylation markers and a multi-msqPCR method is a promising and easily implementable diagnostic method for early-stage colorectal cancer. SIGNIFICANCE: Development of a diagnostic model for early colorectal cancer based on epigenetic analysis of PBMCs supports the utility of altered DNA methylation in immune cells for cancer diagnosis.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Leukocytes, Mononuclear/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA/genetics , Early Detection of Cancer , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
3.
Nat Commun ; 14(1): 4724, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550304

ABSTRACT

The immune system can monitor tumor development, and DNA methylation is involved in the body's immune response to tumors. In this work, we investigate whether DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) could be used as markers for early detection of breast cancer (BC) from the perspective of tumor immune alterations. We identify four BC-specific methylation markers by combining Infinium 850 K BeadChips, pyrosequencing and targeted bisulfite sequencing. Based on the four methylation markers in PBMCs of BC, we develop an efficient and convenient multiplex methylation-specific quantitative PCR assay for the detection of BC and validate its diagnostic performance in a multicenter cohort. This assay was able to distinguish early-stage BC patients from normal controls, with an AUC of 0.940, sensitivity of 93.2%, and specificity of 90.4%. More importantly, this assay outperformed existing clinical diagnostic methods, especially in the detection of early-stage and minimal tumors.


Subject(s)
Breast Neoplasms , DNA Methylation , Humans , Female , DNA Methylation/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Leukocytes, Mononuclear/pathology , Biomarkers, Tumor/genetics , Early Detection of Cancer/methods , Multiplex Polymerase Chain Reaction
4.
Antioxid Redox Signal ; 39(7-9): 531-550, 2023 09.
Article in English | MEDLINE | ID: mdl-37462995

ABSTRACT

Significance: Aberrant redox homeostasis, characterized by the enhancement of intracellular reactive oxygen species (ROS) and antioxidant defenses, is among the well-known cancer hallmarks. Understanding the regulatory mechanisms of redox homeostasis in cancer cells has become the focus of many studies. Epigenetic and post-translational modifications (PTMs), as pivotal regulators of multiple biological processes, play critical roles in tumorigenesis and development. Recent Advances: DNA and RNA methylation are important forms of epigenetic modifications. Recent evidence suggests that DNA/RNA methylation and PTMs can modulate redox homeostasis in multiple manners including affecting key molecules in ROS production, elimination, and redox-related signaling, thereby participating in tumor progression. Critical Issues: The regulatory effects of DNA/RNA methylation and PTMs on ROS are of crucial importance for tumor progression. In this review, we introduce the dual role of ROS in cancer, and then focus on the mechanistic role of DNA/RNA methylation and PTMs, especially ubiquitination and acetylation, in regulating redox homeostasis to involve in cancer progression. Future Directions: A complete understanding of how epigenetics and PTMs function in the regulation of redox homeostasis in cancer progression might expand a new direction for the progression mechanisms and therapeutic targets of cancer. Antioxid. Redox Signal. 39, 531-550.


Subject(s)
Neoplasms , RNA , Humans , Reactive Oxygen Species/metabolism , Protein Processing, Post-Translational , Neoplasms/genetics , DNA Methylation , Oxidation-Reduction , DNA , Homeostasis/physiology
5.
Br J Cancer ; 129(3): 426-443, 2023 08.
Article in English | MEDLINE | ID: mdl-37380804

ABSTRACT

BACKGROUND: The epigenetic mechanisms involved in the progression of pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. This study aimed to identify key transcription factors (TFs) through multiomics sequencing to investigate the molecular mechanisms of TFs that play critical roles in PDAC. METHODS: To characterise the epigenetic landscape of genetically engineered mouse models (GEMMs) of PDAC with or without KRAS and/or TP53 mutations, we employed ATAC-seq, H3K27ac ChIP-seq, and RNA-seq. The effect of Fos-like antigen 2 (FOSL2) on survival was assessed using the Kaplan-Meier method and multivariate Cox regression analysis for PDAC patients. To study the potential targets of FOSL2, we performed Cleavage Under Targets and Tagmentation (CUT&Tag). To explore the functions and underlying mechanisms of FOSL2 in PDAC progression, we employed several assays, including CCK8, transwell migration and invasion, RT-qPCR, Western blotting analysis, IHC, ChIP-qPCR, dual-luciferase reporter, and xenograft models. RESULTS: Our findings indicated that epigenetic changes played a role in immunosuppressed signalling during PDAC progression. Moreover, we identified FOSL2 as a critical regulator that was up-regulated in PDAC and associated with poor prognosis in patients. FOSL2 promoted cell proliferation, migration, and invasion. Importantly, our research revealed that FOSL2 acted as a downstream target of the KRAS/MAPK pathway and recruited regulatory T (Treg) cells by transcriptionally activating C-C motif chemokine ligand 28 (CCL28). This discovery highlighted the role of an immunosuppressed regulatory axis involving KRAS/MAPK-FOSL2-CCL28-Treg cells in the development of PDAC. CONCLUSION: Our study uncovered that KRAS-driven FOSL2 promoted PDAC progression by transcriptionally activating CCL28, revealing an immunosuppressive role for FOSL2 in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Up-Regulation , Chromatin , Ligands , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Chemokines, CC/metabolism , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Pancreatic Neoplasms
6.
Cancer Res ; 83(7): 1074-1093, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36607699

ABSTRACT

Pyroptosis is a type of programmed cell death characterized by the activation of inflammatory caspases and the cleavage of gasdermin proteins. Pyroptosis can suppress tumor development and induce antitumor immunity, and activating pyroptosis is a potential treatment strategy for cancer. To uncover approaches to harness the anticancer effects of pyroptosis, we aimed to identify regulators of pyroptosis in cancer. A CRISPR-Cas9 screen identified that loss of USP48, a deubiquitinating enzyme, significantly inhibited cell pyroptosis. USP48 promoted pyroptosis by stabilizing gasdermin E (GSDME). USP48 bound GSDME and removed K48-linked ubiquitination at positions K120 and K189. Clinical tissue testing confirmed that the expression of USP48 positively correlated with GSDME and pyroptosis-related factors. Single-cell sequencing showed that the functions of T cells and tumor-associated macrophages in the tumor microenvironment were inhibited after USP48 knockout. Finally, overexpression of USP48 enhanced the therapeutic efficacy of programmed cell death protein 1 inhibitors in tumors in mouse models. Together, these findings define a pyroptosis regulation pathway and indicate that pharmacologic activation of USP48 may provide an effective strategy to sensitize cancer cells to pyroptosis and improve response to immunotherapy. SIGNIFICANCE: USP48 promotes pyroptosis by deubiquitinating GSDME and enhances antitumor immunity, indicating that increasing USP48 activity may be a future therapeutic strategy for treating cancer.


Subject(s)
Neoplasms , Pyroptosis , Animals , Mice , Apoptosis , Caspases/metabolism , Gasdermins , Neoplasms/genetics , Pyroptosis/physiology , Tumor Microenvironment , Ubiquitin-Specific Proteases/metabolism
7.
Clin Transl Med ; 13(1): e1149, 2023 01.
Article in English | MEDLINE | ID: mdl-36578176

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in tumour initiation and progression. However, little is known about their contributions to p53-related bladder cancer (BC) inhibition. METHODS: By using high-throughput sequencing, we screened the expression profiles of lncRNAs in BC and adjacent non-tumour tissues. The roles of a novel lncRNA, named LNPPS [a lncRNA for programmed cell death 5 (PDCD5) and p53 stability], were determined by gain- and loss-of-function assays. RNA pull-down followed by mass spectrometry analysis, RNA immunoprecipitation assays and other immunoprecipitation assays were performed to reveal the interactions among LNPPS, PDCD5 and p53, and the regulatory effect of LNPPS on the complex ubiquitination network comprising PDCD5, p53 and mouse double minute 2 homologue (MDM2). RESULTS: LNPPS was downregulated in BC and markedly inhibited the viability of BC cells by inducing PDCD5/p53-related apoptosis in vivo and in vitro. Mechanistically, LNPPS, serving as a scaffold, connected PDCD5 and p53 with nucleotides (nt) located at 121-251 nt and 251-306 nt of LNPPS, respectively. This process allowed LNPPS to protect PDCD5 from proteasomal degradation by blocking its K20 site ubiquitination. On the other hand, the increased interaction between PDCD5 and p53 displaced p53 from the MDM2-p53 ubiquitination complex, resulting in an increase in p53 expression and related apoptosis levels. Moreover, LNPPS could induce the accumulation of PDCD5 and p53 in the nucleus and exert a synergistic effect on the prevention of protein degradation. In addition, we confirmed that the downregulation of LNPPS in BC was mediated by the decreased N6-methyladenosine (m6 A) modification. CONCLUSION: Our findings highlight a novel cross-talk between LNPPS and the PDCD5/p53/MDM2 ubiquitination axis in BC development, indicating its potential as a therapeutic target for BC patients.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Animals , Mice , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , DNA Damage , Neoplasm Proteins/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Urinary Bladder Neoplasms/genetics , Humans
8.
Mol Ther Oncolytics ; 23: 163-180, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34729394

ABSTRACT

Cancer-cell-released exosomal microRNAs (miRNAs) are important mediators of cell-cell communication in the tumor microenvironment. In this study, we sequenced serum exosome miRNAs from esophageal squamous cell carcinoma (ESCC) patients and identified high expression of miR-320b to be closely associated with peritumoral lymphangiogenesis and lymph node (LN) metastasis. Functionally, miR-320b could be enriched and transferred by ESCC-released exosomes directly to human lymphatic endothelial cells (HLECs), promoting tube formation and migration in vitro and facilitating lymphangiogenesis and LN metastasis in vivo as assessed by gain- and loss-of-function experiments. Furthermore, we found programmed cell death 4 (PDCD4) as a direct target of miR-320b through bioinformatic prediction and luciferase reporter assay. Re-expression of PDCD4 could rescue the effects induced by exosomal miR-320b. Notably, the miR-320b-PDCD4 axis activates the AKT pathway in HLECs independent of vascular endothelial growth factor-C (VEGF-C). Moreover, overexpression of miR-320b promotes the proliferation, migration, invasion, and epithelial-mesenchymal transition progression of ESCC cells. Finally, we demonstrate that METTL3 could interact with DGCR8 protein and positively modulate pri-miR-320b maturation process in an N6-methyladenosine (m6A)-dependent manner. Therefore, our findings uncover a VEGF-C-independent mechanism of exosomal and intracellular miR-320b-mediated LN metastasis and identify miR-320b as a novel predictive marker and therapeutic target for LN metastasis in ESCC.

9.
Clin Transl Med ; 11(8): e492, 2021 08.
Article in English | MEDLINE | ID: mdl-34459122

ABSTRACT

In response to a wide range of stimulations, host cells activate pyroptosis, a kind of inflammatory cell death which is provoked by the cytosolic sensing of danger signals and pathogen infection. In manipulating the cleavage of gasdermins (GSDMs), researchers have found that GSDM proteins serve as the real executors and the deterministic players in fate decisions of pyroptotic cells. Whether inflammatory characteristics induced by pyroptosis could cause damage the host or improve immune activity is largely dependent on the context, timing, and response degree. Here, we systematically review current points involved in regulatory mechanisms and the multidimensional roles of pyroptosis in several metabolic diseases and the tumor microenvironment. Targeting pyroptosis may reveal potential therapeutic avenues.


Subject(s)
Neoplasms/immunology , Neoplasms/microbiology , Pyroptosis/physiology , Tumor Microenvironment/physiology , Humans
10.
Cell Death Dis ; 12(7): 670, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34218256

ABSTRACT

Breast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , Neovascularization, Pathologic , RNA, Long Noncoding/metabolism , Y-Box-Binding Protein 1/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MCF-7 Cells , Neoplasm Invasiveness , Neoplasm Metastasis , RNA, Long Noncoding/genetics , Signal Transduction , Y-Box-Binding Protein 1/genetics
11.
Theranostics ; 11(12): 5889-5910, 2021.
Article in English | MEDLINE | ID: mdl-33897888

ABSTRACT

Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.


Subject(s)
Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/microbiology , Animals , Humans , Inflammation/etiology , Inflammation/microbiology , Tumor Microenvironment/physiology
12.
Molecules ; 24(4)2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30781674

ABSTRACT

This study was aimed to investigate the anti-tumor, anti-metastasis and immunomodulatory effects of Yifei Tongluo (YFTL), a Chinese herbal formula, in Lewis lung carcinoma mice and to explore the underlying mechanisms. LLC cells were inoculated subcutaneously in C57BL/6 mice to establish the Lewis lung carcinoma model. We observed that YFTL effectively inhibited tumor growth and prolonged the overall survival of tumor-bearing mice. Additionally, YFTL treatment resulted in a significantly decreased number of surface lung metastatic lesions compared with the model control group. Meanwhile, TUNEL staining confirmed that the tumors from YFTL-treated mice exhibited a markedly higher apoptotic index. The results suggest that Akt and mitogen-activated protein kinase (MAPKs) pathways may be involved in YFTL-induced apoptosis. The results show that YFTL also inhibited the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, MMP-9, N-cadherin, and Vimentin expression, but increased E-cadherin expression. Mechanistic studies indicated that YFTL could suppress the angiogenesis and the epithelial-mesenchymal transition (EMT) of the tumor through Akt/ERK1/2 and TGFß1/Smad2 pathways. In addition, YFTL also showed immunomodulatory activities in improving the immunosuppressive state of tumor-bearing mice. Therefore, our findings could support the development of YFTL as a potential antineoplastic agent and a potentially useful anti-metastatic agent for lung carcinoma therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Lewis Lung/drug therapy , Drugs, Chinese Herbal/therapeutic use , Immunologic Factors/therapeutic use , Animals , Apoptosis/drug effects , Cadherins/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation/drug effects , Immunosuppressive Agents/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred C57BL , Signal Transduction , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factors/genetics , Vimentin/genetics
13.
Molecules ; 23(10)2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30336565

ABSTRACT

In this study, the aim was to investigate the effect of bergenin on immune function and antioxidation in cyclophosphamide (Cy)-induced immunosuppressed mice. Firstly, we estimated its effect on immune organs. Histological analysis and indexes of immune organs showed that cyclophosphamide exhibited spleen and thymus injury compared with the normal control, which was alleviated by bergenin. Secondly, bergenin also enhanced the humoral immune function through increasing the level of IgM and IgG in serum. Thirdly, bergenin also enhanced the cellular immune function. The results indicate that bergenin increased peritoneal macrophage functions, the proliferation of T and B lymphocytes, NK and CTL cell activities, and T (CD4⁺ and CD8⁺) lymphocyte subsets. Besides, bergenin also had the ability to modulate the Th1/Th2 balance. Moreover, bergenin prevented the Cy-induced decrease in numbers of peripheral RBC, WBC and platelets, providing supportive evidence for their anti-leukopenia activities. Finally, bergenin also reversed the Cy-induced decrease in the total antioxidant capacity including activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In conclusion, bergenin protected against Cy-induced adverse reactions by enhancing humoral and cellular immune functions and augmenting antioxidative activity and could be considered as a potential immunomodulatory agent.


Subject(s)
Antioxidants/administration & dosage , Benzopyrans/administration & dosage , Immunocompromised Host/drug effects , T-Lymphocytes, Cytotoxic/drug effects , Animals , Antioxidants/metabolism , Benzopyrans/metabolism , Catalase/metabolism , Cyclophosphamide/administration & dosage , Glutathione Peroxidase/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Malondialdehyde/metabolism , Mice , Phagocytosis/drug effects , Superoxide Dismutase/metabolism , T-Lymphocytes, Cytotoxic/immunology
14.
J Ethnopharmacol ; 194: 72-82, 2016 Dec 24.
Article in English | MEDLINE | ID: mdl-27586820

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine Yifei Tongluo Granules has been employed clinically with the combination of chemotherapy agents to treat patients with multidrug-resistant tuberculosis. However, the mechanisms underlying the therapeutic potential have not been well elucidated. The present study was employed to verify immunomodulatory effect and to investigate the underlying mechanisms which have not been explored. MATERIALS AND METHODS: The study samples of total extracts (FB-E) and polysaccharides (FB-P) were prepared by the extraction of the Yifei Tongluo Granules using appropriate techniques. A simple immunodeficient mice model was established by challenging Balb/c mice with cyclophosphamide in order to avoid the handling of tuberculosis viruses. The in vivo study was thus designed to systematically elucidate the immuno-enhancement effects of Yifei Tongluo Granules extracts in immunosuppressed mice induced by cyclophosphamide. Balb/c mice were orally ingested once daily with the low and high doses of two different extracts for ten consecutive days, respectively, accompanied by intraperitoneal injection of cyclophosphamide (60mg/kg) on days 1-3 and 10. RESULTS: Compared with the model group, the treatment of immunodeficient mice with the low and high doses of the extracts FB-E or FB-P enhanced spleen and thymus indices, T- and B-cell proliferation as well as increased the activities of splenic natural killer, lymphokine activated killer, cytotoxic T lymphocyte cells and peritoneal macrophage phagocytosis. In addition, the FB-E or FB-P treatment balanced the ratio of Th1/Th2 and up-regulated the CD4+/CD8+ ratio in the serum. CONCLUSIONS: These results demonstrate, for the first time, that the treatment of the cyclophosphamide-challenged mice with the Yifei Tongluo Granules extracts resulted in accelerated recovery of immunosuppression, sugguesting that the immunomodulation might be the mechanism for the observed clinical benefits of Yifei Tongluo Granules. Our findings provide preliminary mechanistic study evidences for clinical application of Yifei Tongluo Granules in patients with immunodeficient diseases such as tuberculosis.


Subject(s)
Cyclophosphamide/adverse effects , Drugs, Chinese Herbal/pharmacology , Immunosuppression Therapy , Medicine, Chinese Traditional , Animals , CD4-CD8 Ratio , Chromatography, High Pressure Liquid , Cytokines/blood , Cytotoxicity, Immunologic , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Male , Mice , Mice, Inbred BALB C , Spectrometry, Mass, Electrospray Ionization , Spleen/drug effects , Spleen/immunology , Thymus Gland/drug effects , Thymus Gland/immunology
15.
Int Immunopharmacol ; 34: 37-43, 2016 May.
Article in English | MEDLINE | ID: mdl-26919281

ABSTRACT

The anti-cancer effects of oil-soluble organosulfur compounds in garlic in the initiation phase of carcinogenesis are known. However, there are few experimental studies investigating S-allylmercaptocysteine (SAMC), a water-soluble derivative of garlic. This study investigated whether SAMC prevented the carcinogen benzo(a)pyrene (B(a)P) from inducing precancerous activity in human lung cells (A549 cell line). A549 cells were either pre-treated (PreTM) or concurrently treated (CoTM) with 1µM B(a)P and either 10 or 50 µM SAMC. The 50 µM PreTM group inhibited B(a)P-induced cell proliferation by approximately 100%. The 50 µM SAMC PreTM and CoTM inhibited the B(a)P-induced G2/M phase shift by 100% and 97%, respectively. Furthermore, the PreTM and CoTM groups exhibited the potential to reduce the generation of reactive oxygen species (ROS) relative to the B(a)P group by at least 78%. The SAMC PreTM elevated superoxide dismutase (SOD) by approximately 100%. In this study, we revealed the mechanisms involved in SAMC inhibition of B(a)P-induced carcinogenesis, including suppression of cell proliferation, cell cycle regulation, attenuation of ROS formation, inhibition of DNA damage, increase of SOD activity and inhibition of nuclear factor-kappa B (NF-κB) activity. SAMC appears to be a novel therapeutic candidate for the prevention and treatment of B(a)P-induced human lung cancer.


Subject(s)
Carcinogenesis , Cysteine/analogs & derivatives , Lung Neoplasms/drug therapy , Lung/drug effects , NF-kappa B/metabolism , A549 Cells , Benzo(a)pyrene/metabolism , Carcinogenesis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cysteine/pharmacology , Garlic/immunology , Humans , Lung/pathology , Precancerous Conditions , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...